Conoce a Lara — tu asistente de IA para todo. 💬 Pruébalo ahora.

Loading...

Inducción Matemática

Conjuntos y lógicaComplejidad

La inducción matemática es un método de demostración con el que mostramos que una afirmación es válida para todo número natural. Es particularmente útil en la demostración de fórmulas de sumas, secuencias y afirmaciones de divisibilidad.

Pasos de la Inducción

  • 1. Caso base: verificar la afirmación para el primer número (generalmente n=1).
  • 2. Hipótesis inductiva: suponer que la afirmación es válida para n.
  • 3. Paso inductivo: demostrar que si es válida para n, también lo es para n+1.

Ejemplo Simple

Demostremos que la suma de los primeros n números naturales se da por la siguiente fórmula:

1. Caso base: para n=1, lado izquierdo = 1, lado derecho = 1·(1+1)/2 = 1 → verdadero. 2. Supongamos que es válido para n. 3. Paso inductivo: sumando n+1, la fórmula también es válida para n+1. Con esto hemos demostrado la afirmación para todo n.

Esquema General

La esencia de la demostración inductiva es que no es necesario realizar la demostración por separado para cada n: basta con demostrar el caso base y el paso inductivo, y se aplicará automáticamente a todos los casos subsiguientes.

¿Cuándo Usarla?

  • En la demostración de fórmulas de sumas.
  • En propiedades de divisibilidad (p. ej., un número siempre divisible por algo).
  • Para verificar la corrección de definiciones recursivas.
  • En teoremas de teoría de números.

Resumen

Con el método de inducción matemática, podemos demostrar que una afirmación es válida para todo número natural. Tiene dos partes principales: caso base y paso inductivo. Esta es una de las técnicas de demostración más importantes en matemáticas.

Ejercicio de Práctica

Hemos revisado y comprobado los materiales, pero aún pueden existir errores. El contenido se ofrece únicamente con fines educativos, así que úsalo bajo tu propia responsabilidad y verifica con otras fuentes si es necesario.

✨ Pregunta a Lara — tu compañera de estudio con IA

Desbloquea soporte de aprendizaje personalizado. Lara puede explicar lecciones, resumir temas y responder tus preguntas — disponible desde el plan Go y superiores.


Lara te ayuda a aprender más rápido — exclusivo para los miembros ReadyTools Go, Plus y Max.

Sigue Tu Progreso 🚀

Aprende más fácilmente siguiendo tu progreso completamente gratis.


Herramientas destacadas

BoardlyLinksyChromoHub de Código

Seleccionar idioma

Establecer tema

© 2025 ReadyTools. Todos los derechos reservados.